¹¹⁵Sn NMR spectroscopy: a useful satellite pattern assignment method in gem-distannyl compounds

Jean-Charles Meurice,^{*a*} Martine Vallier,^{*a*} Max Ratier,^{***,^{*a*}} Jean-Georges Duboudin^{*b*} and Michel Pétraud^{*c*}

^a Laboratoire de Chimie Organique et Organométallique, URA 35 CNRS,

Université Bordeaux I, Bordeaux, France

^b Ecole Nationale Supérieure de Chimie et de Physique de Bordeaux, Bordeaux, France

^c Centre d'Etude Structurale et d'Analyse des Molécules Organiques, Université Bordeaux I,

351 Cours de la Libération, 33405 Talence Cedex, France

¹¹⁵Sn and ¹¹⁹Sn NMR parameters of diastereotopic tins in model gem-distannyl compounds of the type Sn_2CHR are presented. The use of ¹¹⁵Sn NMR INEPT experiments provides a useful simplification of spectral analysis, resulting in a complete elimination of higher-order homonuclear satellite patterns.

Owing to the known ability of tin to undergo a variety of useful transformations,¹ we recently developed a programme to prepare various organotin compounds as precursors in organic synthesis and were interested in exploring the double hydrostannation of terminal alkynes in the presence of thiol.² Thus, using 4-methoxybenzenethiol as catalyst, the hydrostannation of 1-alkynes promotes the formation of 1,1-distannyl adducts.

Structural assignments were based mainly on the ¹¹⁹Sn NMR spectra.³ Generally, while measurement of couplings is trivial because the spectra of satellite patterns arising from the ¹¹⁷Sn-¹¹⁹Sn and ¹¹⁹Sn-¹¹⁹Sn isotopomers could be analysed according to simple first-order rules, we encountered assignment difficulties when homonuclear higher-order ¹¹⁹Sn-¹¹⁹Sn systems were present. Such behaviour was observed for selected model compounds of the type (Bu₃Sn)₂CHCH₂CH₂O-THP1, (Bu₃Sn)₂CHCH₂CH(CH₃)OH2 and (Bu₃Sn)₂CHCH₂-CH(CH₃)OTHP 3. The ¹¹⁹Sn spectra of such compounds are characterised by the appearance of variable intensity lines between the non-coupled tin resonances which cannot be unambiguously assigned. Obviously, the large number of satellite lines due to homo- and hetero-nuclear couplings, associated with the possible presence of monostannylated species signals, renders the spectra of these gem-distannyl compounds more complicated, as shown in Fig. 1. The question is whether these lines could be ascribed to strong coupled ¹¹⁹Sn-¹¹⁹Sn spin systems, whose AB type central lines are superimposed in 1 and slightly separated in 2^{\dagger} . In compound 3, each pair of diastereoisomers gives rise to its own strongly coupled satellite system. No significant modification of these spectra has been observed at a higher magnetic field (9.395 T). Hence, the aim of this work is to propose a simple and versatile method for the unambiguous assignment of higher-order ^{1 (9}Sn-¹¹⁹Sn systems.

As a rule, while the conventional gated decoupler method allows routine assignments in monostannylated derivatives with satisfactory sensitivity, refocused INEPT spectra are required in the case of distannyl compounds for an accurate identification of ${}^{13}C^{-119}Sn$ and ${}^{117/119}Sn^{-119}Sn$ satellite patterns. gem-Tributyldistannyl compounds, where 24 protons are coupled to the tins, are particularly suitable for producing a strong sensitivity enhancement factor.⁴ In refocused INEPT

experiments, homo- and hetero-nuclear spin echoes are monitored as a function of the refocusing delay time Δ and are by no means equivalent. Significant intensities and phase modulations of homonuclear satellite patterns could arise with different Δ values. In our first approach to the problem and owing to the critical choice of this time parameter, we developed a fast computer program giving rise to a graphic representation of the variations in signal intensities *versus* Δ values.⁶ The prominent feature of this representation is to underscore the possibility of appearance/disappearance, as well as selective inversion, of homonuclear satellite patterns in experimental spectra for characteristic Δ values, while heteronuclear modulations remain unchanged. Unfortunately, this striking property does not apply to the strongly coupled homonuclear spin-systems encountered in compounds 1–3.

To solve the assignment problem we have taken advantage of the low isotopic abundance of the ¹¹⁵Sn magnetically active isotope (natural abundance 0.35%), for which the amount of NMR information available is still rather limited.⁷ Experiments were based on the assumption that in ¹¹⁵Sn spectra the ¹¹⁵Sn-¹¹⁵Sn system should be located between the non-coupled ¹¹⁵Sn resonances, by comparison with corresponding lines in ¹¹⁹Sn spectra. Thus, owing to the low isotopic abundance of these species, the ¹¹⁵Sn-¹¹⁵Sn satellite patterns should disappear. As expected, internal lines could not be detected in the ¹¹⁵Sn spectra of compounds 1-3, confirming the assignments in related ¹¹⁹Sn spectra. An example is given for compound 1 in Fig. 1. Hence, ¹¹⁵Sn NMR spectra exhibit only first-order coupling patterns arising from ¹³C-¹¹⁵Sn couplings and ¹¹⁵Sn-¹¹⁷Sn/¹¹⁵Sn-¹¹⁹Sn isotopomers. In compound 3, connections between lines belonging to each diastereoisomer could be immediately inferred from the comparison between ¹¹⁵Sn and ¹¹⁹Sn spectra.

In conclusion, in compounds where the statistical distribution and mixing of first-order and higher-order satellite splitting patterns presents some assignment difficulties, the use of ¹¹⁵Sn NMR INEPT spectroscopy leads to a useful simplification in spectral analysis, which can be analysed according to simple first-order rules. This is particularly so in compounds where several tin centres are found in combination with isotopes having similar natural abundances as ^{117/119}Sn (such as ²⁹Si, ⁷⁷Se). Moreover, the use of the ¹¹⁵Sn NMR INEPT sequence allows an unambiguous assignment of tin–carbon couplings in the case of interference between ^{2/3} $J(^{13}C^{-119}Sn)$ and ¹¹⁹Sn– ¹¹⁹Sn satellite patterns, demonstrating that the external lines of the strongly homonuclear ¹¹⁹Sn–¹¹⁹Sn systems do not occur in experimental spectra.

[†] Examination of the ¹¹⁹Sn NMR spectrum reveals some discrepancies with the literature data ⁵ with respect to the reported signs of chemical shifts, which should be positive.

Fig. 1 ¹¹⁵Sn and ¹¹⁹Sn NMR spectra of gem-distannyl compound 1: the resonances arising from the ¹¹⁷Sn–¹¹⁹Sn and from the ¹¹⁹Sn–¹¹⁹Sn isotopomers are labelled with asterisks and with circles, respectively. The resonances arising from the ¹¹⁵Sn–¹¹⁷Sn and from the ¹¹⁵Sn–¹¹⁹Sn isotopomers are labelled with asterisks and with circles, respectively (*: accompanying impurity).

Experimental

Tin NMR experiments were performed on a Bruker AC-200 spectrometer (¹¹⁵Sn, 65.485 MHz; ¹¹⁹Sn, 74.630 MHz) fitted with an Aspect 3000 data system using a 10 mm broad-band probe. ¹¹⁵Sn and ¹¹⁹Sn spectra were recorded at 22 °C in a 30% (w/v) solution in C_6D_6 for compounds 1-3. ¹¹⁹Sn spectra of compound 2 were recorded in C_6D_6 and $CDCl_3$. Chemical shifts were referenced with respect to Me₄Sn (internal standard) and are expressed as δ_{ppm} . J Values are given in Hz. ¹¹⁵Sn/¹¹⁹Sn chemical shifts and ²J(¹¹⁵Sn-¹¹⁹Sn), ²J(¹¹⁵Sn-¹¹⁷Sn), ²J(¹¹⁷Sn-¹¹⁹Sn) values were determined using INEPT decoupled experiments.8 Optimization of experimental polarization and refocusing parameters (τ, Δ) were obtained from a previously reported computer program.⁶ The following parameters were used: 115 Sn 90° pulse: 19 µs, recycle delay: 1 s, H₁ 90° pulse: 35 µs, polarization transfer delay: 0.005 s, refocusing delay: 0.002 s; number of scans: 3000 and 128 for ¹¹⁵Sn and ¹¹⁹Sn, respectively. Mass spectral data refer to the ¹²⁰Sn isotope. New compounds 1-3 were prepared according to a preceding report.2

Compound 1 (Bu₃Sn)₂CHCH₂CH₂OTHP

¹H NMR, δ_{ppm} 0.58–1.78 (m, 61 H), 1.96–2.14 (m, CH₂CH₂O), 3.12–3.32 (m, 1 H, OCH₂ ring), 3.36–3.5 (m, 1 H, OCH CH₂OTHP), 3.52–3.66 (m, 1 H, OCH₂ ring), 3.74–3.88 (m, 1 H, CH₂OTHP), 4.48–4.58 (m, OCH ring); ¹³C NMR, δ_{ppm} –0.7 [Sn₂CH α , ¹J(¹¹⁹Sn–¹³C) = 237, ¹J(¹¹⁷Sn–¹³C) = 226.5], 10.1/10.2 [CH₂ α , ¹J(¹¹⁹Sn–¹³C) = 307.1, ¹J(¹¹⁷Sn–¹³C) = 292.8], 13.7 (CH₃), 19.7 [O(CH₂)₂CH₂ ring], 25.6 (OCH₂CH₂ ring), 27.5 [CH₂ α , ³J(^{117/119}Sn–¹³C) = 57.2], 29.4 [CH₂ β , ²J(^{117/119}Sn–¹³C) = 19.1], 30 [O(CH₂)₃CH₂ ring], 31.2 [Sn₂CHCH₂, ²J(^{117/119}Sn–¹³C) = 21], 62.3 (OCH₂ ring), 71.3 [CH₂OTHP, ³J(^{117/119}Sn–¹³C) = 43.9], 98.8 (C_q, CH ring). ¹¹⁹Sn NM, δ_{ppm} +11.3 [²J(¹¹⁷Sn–C¹¹⁹Sn) = 158.7, ²J(¹¹⁹SnC¹¹⁹Sn) = 165.9], +11.5 [²J(¹¹⁷SnC¹¹⁹Sn) = 158.9, ²J(¹¹⁵SnC¹¹⁷Sn) = 139.3, ²J(¹¹⁵SnC¹¹⁹Sn) = 145.4]; *m*/z 579/581/583 [M - C₅H₉O₂ - C₄H₈]⁺ (80/100/79), 291/289/287 [Bu₃Sn]⁺ (31/37/22), 235/233/231 [Bu₂SnH]⁺ (29/30/18), 179/177/175/173 [BuSnH₂]⁺ and [BuSn]⁺ (49/61/38/9), 85 [C₅H₉O₂]⁺ (21), 57 [C₄H₉]⁺ (11) (Calc. for C₃₂H₆₈O₂Sn₂: C, 53.21; H, 9.49; O, 4.43; Sn, 32.87. Found: C, 53.25; H, 9.74; O, 4.59; Sn, 33.18%.)

Compound 2 (Bu₃Sn)₂CHCH₂CH(CH₃)OH

¹H NMR, δ_{ppm} 0.58–1.6 (m, 55 H), 1.16 [d, 3 H, CH₃CH, ³J(H–H) = 6], 1.76–1.94 (m, 2 H, CH₂CHOH), 3.42–3.6 (m, 1 H, CHOH); ¹³C NMR, δ_{ppm} 0.18 [Sn₂CH α , ¹J(¹¹⁹Sn–¹³C) = 236.8, ¹J(¹¹⁷Sn–¹³C) = 226.6], 10.11 [CH₂ α , ¹J(¹¹⁹Sn–¹³C) = ¹³C) = 307.7, ¹J(¹¹⁷Sn–¹³C) = 295.4, ³J(¹¹⁷/₁₁₉Sn– CH–Sn-¹³C) = 6.06], 10.2 [CH₂ α , ¹J(¹¹⁹Sn–¹³C) = 307.8,

 ${}^{1}J({}^{117}Sn{}^{-13}C) = 295.3, {}^{3}J({}^{117/119}Sn{}^{-}CH{}^{-}Sn{}^{-13}C) = 6.23$] 13.55 (CH₃ butyl group), 23.04 (CH₃CHOH), 27.52 [CH_{2y}, ${}^{3}J({}^{117/119}\text{Sn}{-}^{13}\text{C}) = 57.2$], 29.26 [CH₂ β , ${}^{2}J({}^{117/119}\text{Sn}{-}^{17/119}\text{$ $J(1^{10} \text{Sn}^{-1} \text{C}) = 51.2\text{J}, 29.26 \text{ [CH}_{2}\text{p}, J(1^{17}/1^{19} \text{Sn}^{-13}\text{C}) = 20.9\text{]}, \\ J^{13}\text{C} = 19.07\text{]}, 40.9 \text{ [CH}_{2}\text{CHOH}, {}^{2}J(1^{17}/1^{19}\text{Sn}^{-13}\text{C}) = 20.9\text{]}, \\ J^{113}\text{C} = [\text{CHOH}, {}^{3}J(1^{17}/1^{19}\text{Sn}^{-13}\text{C}) = 41.9\text{]}; {}^{119}\text{Sn} \text{ NMR} \\ (C_{6}D_{6}), \delta_{ppm} + 9.2 \quad [{}^{2}J(1^{17}\text{Sn}\text{C}^{119}\text{Sn}) = 160.8, \\ {}^{2}J(1^{19}\text{Sn}\text{C}^{119}\text{Sn}) = 168.3\text{]}, + 10.2 \, [{}^{2}J(1^{17}\text{Sn}\text{C}^{119}\text{Sn}) = 161.0, \\ {}^{2}J(1^{19}\text{Sn}\text{C}^{119}\text{Sn}) = 168.5\text{]}; {}^{119}\text{Sn} \text{ NMR} \quad (\text{CDCl}_{3}; \text{ literature} J(1^{10} \text{C}) = 162.5\text{]}; \\ J^{12}\text{C} = 2.65 \text{ C}, J^{12}\text{C} = 2.65 \text{ C}, J^{12}\text{C} = 1.27 \text{ A}; J^{12}\text{C} = 1.27 \text{$ data:⁵ -7.35/-8.85), δ_{ppm} +7.4 [²J(¹¹⁷SnC¹¹⁹Sn) = 167.4, $[^{2}J(^{115}SnC^{117}Sn) = 141.4, \ ^{2}J(^{115}SnC^{119}Sn) = 148.5]; \ m/z$ 593/595/597 $[M - C_4 H_9]^+$ (90/100/79),287/289/291 $[Bu_3Sn]^+$ (7/12/11), 231/33/235 $[Bu_2SnH]^+$ (11/16/15), 173/175/177/179 [BuSnH₂]⁺ and [BuSn]⁺ (10/29/41/37), 117/119/121 [SnH]⁺ (11/ $\overline{8}$ /11), 57 [C₄H₉]⁺ (11) (Calc. for C₂₈H₆₂OSn₂: C, 51.56; H, 9.58; O, 2.45; Sn, 36.40. Found: C, 51.54; H, 9.56; O, 2.68; Sn, 36.16%.)

Compound 3 (Bu₃Sn)₂CHCH₂CH(CH₃)OTHP

¹H NMR, δ_{ppm} 0.44–2.2 (66 H), 3.24–3.56 (m, 4 H, OCH₂ ring), 3.72-3.9 [m, CH(CH₃)O], 4.4-4.58 (m, OCH ring); ¹³C NMR, $\delta_{ppm} = -0.33 \ [Sn_2CH\alpha, {}^{-1}J({}^{117/119}Sn{}^{-13}C) = 233.6, {}^{1}J({}^{117/119}Sn{}^{-13}C) = 231.7], 10.03/10.08/10.22 \ [CH_{2}\alpha, {}^{1}J({}^{1}J({}^{1}D(A)) = 231.7], 10.03/10.08/10.22 \ [CH_{2}\alpha, {}^{1}J({}^{1}D(A)) = 231.7], 10.03/10.08/10.22 \ [CH_{2}\alpha, {}^{1}D(A)] = 2$ ${}^{1}J({}^{119}\text{Sn}{-}^{13}\text{C}) = 301.3/310.9/306.1,$ $J^{1}J^{(117}Sn-13C) =$ 288/299.4/291.8], 14.11 (CH₃, butyl), 18.49/21.03 (CH₃-CHOTHP), 20.04/20.37 (C-4, ring), 25.53/25.62 (C-5, ring), 27.9 (CH_{2y}), 29.7 (CH₂β), 31.28/31.38 (C-3, ring), 38.08/38.22 (Sn_2CHCH_2) , 62.70/63.05 (C-6, ring), 75.32/77.58 [CH(CH₃)O], 96.43/98.93 (C-2, ring); ¹¹⁹Sn NMR, δ_{ppm} diastereoisomer A: +10.6 [²J(¹¹⁷SnC¹¹⁹Sn) = 166.1, ${}^{2}J({}^{119}\text{SnC}{}^{119}\text{Sn}) = 173.7$], +11.5 [${}^{2}J({}^{117}\text{SnC}{}^{119}\text{Sn}) = 166.0$ Hz, ${}^{2}J({}^{119}SnC{}^{119}Sn) = 173.8$]; diastereoisomer B: +10.9 ${}^{2}J({}^{117}\text{SnC}{}^{119}\text{Sn}) = 168.2, {}^{2}J({}^{119}\text{SnC}{}^{119}\text{Sn}) = 175.9], +11.2$ ${}^{2}J({}^{117}\text{SnC}{}^{119}\text{Sn}) = 168.1, {}^{2}J({}^{119}\text{SnC}{}^{119}\text{Sn}) = 176.0]; {}^{115}\text{Sn}$ NMR, δ_{ppm} diastereoisomer A: +10.6 [²J(¹¹⁵SnC¹¹⁷Sn) = 145.3, ²J(¹¹⁵SnC¹¹⁹Sn) = 152.6], +11.5 [¹J(¹¹⁵SnC¹¹⁷Sn) = 146.0, ²J(¹¹⁵SnC¹¹⁹Sn) = 152.6], diastereoisomer B: +11.0 $[{}^{2}J({}^{115}SnC{}^{117}Sn) = 147.8, {}^{2}J({}^{115}SnC{}^{119}Sn) = 154.5], +11.2$ $[^{2}J(^{115}SnC^{117}Sn) = 147.8, \ ^{2}J(^{115}SnC^{119}Sn) = 154.0]; \ m/z$ $[^{2}J(^{115}SnC^{117}Sn) = 147.8, \ ^{2}J(^{115}SnC^{119}Sn) = 154.0]; \ m/z$ $[^{6}77/679/681 \ [M - C_{4}H_{9}]^{+} \ (16/18/15), \ 593/595/597 \ [M - C_{5}H_{9}O_{2} - C_{4}H_{8}]^{+} \ (89/100/80), \ 287/289/291 \ [Bu_{3}Sn]^{+}$ (11/17/18), 231/233/235 [Bu₂SnH]⁺ (9/15/15), 173/175/177/179 $[BuSnH_2]^+$ and $[BuSn]^+$ (9/28/40/37), 85 $[C_5H_9O_2]^+$ (71), 57 $[C_4H_9]^+$ (18) (Calc. for $C_{33}H_{70}O_2Sn_2$: C, 53.83; H, 9.58; Sn, 32.24. Found: C, 53.99; H, 9.90; Sn, 31.97%.)

Acknowledgements

We are indebted to the CNRS and to the Conseil Régional d'Aquitaine for financial support.

References

- 1 S. Patai and Z. Rappoport, *The Chemistry of Organic Germanium, Tin and Lead Compounds*, Wiley, Chichester, 1995; M. Pereyre and Quintard J. P. A. Rahm, *Tin in Organic Synthesis*, Butterworth, London, 1987; P. G. Harrison, *Chemistry of Tin*, Blackie, New York, 1989.
- 2 J. C. Meurice, M. Vallier, S. André, M. Ratier and J. G. Duboudin, J. Organomet. Chem., 1995, 491, C5-C6.
- 3 (a) B. Wrackmeyer, Ann. Rep. NMR Spectrosc., 1985, 18, 73; (b)
 V. S. Petrosyan, Prog. Nucl. Magn. Reson. Spectrosc., 1977, 11, 115;
 (c) P. G. Harrison, Chemistry of Tin, ed. P. G. Harrison, Blackie, Glasgow 1989; (d) T. N. Mitchell and M. El-Behairy, J. Organomet. Chem., 1979, 172, 293; (e) T. N. Mitchell, A. Amamria, B. Fabisch, H. G. Kuivila, T. J. Karol and K. Swami, J. Organomet. Chem., 1983, 259, 157; (f) B. Wrackmeyer, J. Magn. Reson., 1984, 59, 141; (g)
 M. Delmas, J. C. Maire and R. Pinzelli, J. Organomet. Chem., 1969, 16, 83.
- 4 (a) V. Gouron, B. Jousseaume, M. Ratier, J. C. Lartigue and M. Pétraud, Magn. Reson. Chem., 1990, 28, 755; (b) M. Ratier,

B. Jousseaume, N. Noiret, N. Petit, J. C. Lartigue and M. Pétraud, Magn. Reson. Chem., 1993, 31, 176.

- 5 M. Lautens, C. H. Zhang, B. J. Goh, C. M. Crudden and M. J. A. Johnson, *J. Org. Chem.*, 1994, **59**, 6208.
- 6 J. C. Lartigue, M. Harket, B. DeJeso, M. Pétraud and M. Ratier, Comput. Chem., 1996, 20, 219.
- 7 (a) D. M. Doddrell and D. T. Pegg, J. Am. Chem. Soc., 1980, 102, 6388; (b) D. T. Pegg, D. M. Doddrell, W. M. Brooks and M. R. Bendall, J. Magn. Reson., 1981, 44, 32.
- 8 (a) A. Lycka, D. Snobl, K. Handlir, J. Holecek and M. Nadvornik, *Collect. Czech. Chem. Commun.*, 1981, 46, 1383; (b) P. Diehl, A. C. Kunwar and H. Zimmermann, *J. Magn. Reson.*, 1978, 30, 62; (c) H. Schumann and H. J. Kroth, *Z. Naturforsch.*, *Teil B*, 1974, 29, 573; (d) H. Krüger, O. Lutz, A. Nolle and A. Uhl, *Z. Naturforsch.*, *Teil A* 1972, 27, 173.

Paper 6/00748A Received 31st January 1996 Accepted 29th March 1996